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On a certain class of general discrete spaces including fractals, we consider a model in
which each pair of distinct points is connected by a random bond. The main question we
are concerned is whether a connected component consisting of infinitely many points
exists or not. This depends on the choice of parameters in the connecting probabilities,
and the aim of this paper is to find thresholds of the parameters.
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1. INTRODUCTION AND RESULTS

The problem of a long-range percolation was introduced by Schulman in Ref. 17
and it is well-studied on a d-dimensional integer lattice Zd by now, see below. In
this paper, we consider the long-range percolation in some general settings. We
shall discuss on the space X , instead of Zd .

Let X be a countable infinite set, and let ρ be a map from X × X to R+ =
[0,∞), which satisfies the following two conditions;

• ρ(x, y) = 0 ↔ x = y (x, y ∈ X ),
• ρ(x, y) = ρ(y, x).

For example, a metric on X satisfies these two conditions.
Each unoriented pair of distinct points x, y ∈ X is connected by an unoriented

bond with probability p(x, y) = p(y, x) ∈ [0, 1), independently of other pairs.
In other words, we consider the following probability space � and probability
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measure Pp on it; we denote p = {p(x, y)}x,y∈X,x �=y .

� =
∏

(x,y)∈X×X ,x �=y

{0, 1}, Pp =
∏

(x,y)∈X×X,x �=y

µxy,

where µxy(1) = p(x, y), µxy(0) = 1 − p(x, y), and the products are taken over
all unoriented pairs (x, y). The state 1 means that x and y are connected by a bond
〈x, y〉 (= 〈y, x〉), while the state 0 means that there is no bond connecting x and
y.

This paper especially studies the case where p satisfies the condition

lim
ρ(x,y)→∞

p(x, y)

βρ(x, y)−α
= 1

for some α, β > 0.
For given ρ, the main question we are concerned with is to classify the

relation between p and the probability of an ∞-cluster, i.e., a connected component
consisting of infinitely many points of X , to exist.

When X = Z and ρ(x, y) = |x − y|, it is known that the phase transitions
occur at α = 1, 2, and β = 1. More precisely,

(1) When α ≤ 1, under a certain aperiodicity condition, all points are con-
nected with probability 1.

(2) When 1 < α < 2 or “α = 2 and β > 1,” one can choose p, for which an
∞-cluster exists with probability 1, and one can also choose p, for which
the probability that an ∞-cluster exists is 0.

(3) When “α = 2 and β ≤ 1,” or 2 < α, the probability that an ∞-cluster
exists is always 0.

For details, see Refs. 1, 11, 16 and others. When X = Zd (d ≥ 2) and
ρ(x, y) = |x − y|Zd , by the result of (nearest-neighbor) bond percolation on Zd ,
an ∞-cluster may exist for any α, β. Among recent studies on long-range percola-
tion, random walks on ∞-clusters are discussed in Ref. 3, and chemical distances
are studied by Refs. 2, 4–8, 10. The long-range percolation on random sets in Rd

is considered in Ref. 9.
In this paper, we extend the problem on more general spaces, including

fractals. The conditions we always assume on ρ is the following;

(A1) There exist ci > 0(1 ≤ i ≤ 4), a, b > 1, and for each x ∈ X , there exists
{B(x, n)}∞n=0, a sequence of subsets of X , such that

• x ∈ B(x, 0) ⊂ B(x, 1) ⊂ B(x, 2) ⊂ · · ·,
• ∪∞

n=0 B(x, n) = X ,
• c1an ≤ supy,z∈B(x,n) ρ(y, z) ≤ c2an (n ≥ 0),
• c3bn ≤ |B(x, n)| ≤ c4bn (n ≥ 0),
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where |B(x, n)| stands for the number of points in B(x, n). We denote

D = log b

log a
.

We note that {B(x, n)}∞n=1 and a, b may not be uniquely determined. In the follow-
ing discussions, we consider with some fixed {B(x, n)}∞n=1. Under some additional
conditions, α = D, 2D may become critical values in certain sense in our setting,
though the rigorous proof for the region D < α ≤ 2D is still missing.

We prepare some further notations. For x, y ∈ X , x ∼ y means there exists a
bond 〈x, y〉, and x ↔ y means x and y are connected (i.e., for some positive integer
n and for some x0, x1, . . . , xn ∈ X , x = x0 ∼ x1 ∼ · · · ∼ xn = y). For A, B ⊂ X ,
A ∼ B means x ∼ y for some x ∈ A, y ∈ B. We define A ↔ B similarly. We
denote

C(x) = {x} ∪ {y ∈ X |y ↔ x},
a connected component containing x , and

P∞ = Pp

[
⋃

x∈X

{|C(x)| = ∞}
]

,

the probability that an ∞-cluster exists. By Kolmogorov’s 0 − 1 law, P∞ is either
0 or 1.

In the remaining of this section, we formulate main results of this paper and
give examples covered by our results. In Sec. 2, we shall give proofs of Theorems.

We require the following condition (A2) in Theorem 1.1.

(A2) Let {B(x, n)} be the same as in (A1). For any x ∈ X , one can find
{x (n)}∞n=0, such that x (n) ∈ R(x, n) ≡ B(x, n)\B(x, n − 1), and for any n, there
exists a bijective map from B(x, n)\{x} to B(x, n)\{x (n)}, which preserves ρ.

Theorem 1.1. We assume α < D, and let p satisfies that p(x, y) is nonincreasing
for ρ(x, y) (x, y ∈ X ). Then, under (A1),(A2) for ρ, we have

Pp

[
⋂

x∈X

{C(x) = X}
]

= 1.

Theorem 1.2. We assume α = D. Then, under (A1) for ρ, for any x ∈ X,

Pp[#{y ∈ X |y ∼ x} = ∞] = 1.

We require the following condition (A3) in Theorems 1.3 and 1.4.
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(A3) Let {B(x, n)} be the same as in (A1). There exists a positive constant c5

(depending only on ρ) and for all x ∈ X and all n ≥ 0, the following holds.

c5an ≤ inf{ρ(y, z)|y ∈ B(x, n), z ∈ R(x, n + 1)}.
Theorem 1.3. We assume α > D. Then, under (A1),(A3) for ρ, we can choose
p, for which P∞ = 0.

Theorem 1.4. We assume α > 2D. Then, under (A1),(A3) for ρ, P∞ = 0.

Before giving some examples covered by our results, we review the definitions
of some fractals. See Refs. 15, 18, 19, for example, for more details for fractal
lattices and bond percolation on them.

(1) (Sierpinski gasket lattice.) Let 0 = (0, 0), u0 = ( 1
2 ,

√
3

2 ), v0 = (1, 0) ∈ R2,
and F0 be a graph which consists of the vertices and edges of the triangle
�0u0v0. We define

Fn+1 = Fn ∪ (Fn + un) ∪ (Fn + vn),

where un = 2nu0, vn = 2nv0. We call F = ∪∞
n=0 Fn the Sierpinski gasket

lattice.
(2) (Sierpinski carpet lattice.) Let G0 be a graph corresponding to a rectangle

with vertices (0, 0), (0, 1), (1, 0), (1, 1) ∈ R2. For T = {(i, j) ∈ Z2|0 ≤
i, j ≤ 2, (i, j) �= (1, 1)}, we define

Gn+1 =
⋃

(i, j)∈T

{Gn + (i3n, j3n)}.

We call G = ∪∞
n=0Gn the Sierpinski carpet lattice.

(3) (The space like Cantor set.) As an example for Theorems 1.3, 1.4, we also
consider the space like Cantor set H ⊂ Z, although it is not a connected
graph. Let H0 = {0, 1}, and

Hn+1 = Hn ∪ (Hn + 3n × 2).

We define H = ∪∞
n=0 Hn .

Example 1.5. When X is the vertex set of the Sierpinski gasket lattice and ρ is a
graph metric on the lattice, (A1) holds by regarding the vertex set of Fn as B(0, n).
By the self-similarity, we can also find appropriate {B(x, n)}∞n=0 for any point x .
We note that, in our case, B(x, n) does not stand for a ball with radius n, but the
“n-th stage” set in constructing the lattice as above. In this case, (A1) is satisfied
with a = 2, b = 3, and D = log 3

log 2 coincides with the Hausdorff dimension of the
lattice. Furthermore, by noticing that Fn\{(0, 0)} is isomorphic to Fn\{(2n, 0)} for
any n, (A2) is also satisfied. Here, (A3) does not hold.
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Example 1.6. When X is the vertex set of the Sierpinski carpet lattice and ρ is
a graph metric on the lattice, (A1), (A2) hold by regarding the vertex set of Gn as
B(0, n), in the same way as Example 1.5. In this case, a = 3, b = 8, and D = log 8

log 3 .
(A3) does not hold.

Example 1.7. When X is the space like Cantor set and ρ is a metric induced by
the metric on Z, (A1), (A2) holds by regarding Hn as B(0, n). In this case, a = 3,
b = 2, and D = log 2

log 3 . Now, (A3) is also satisfied by noticing that the distance
between Hn and Hn+1\Hn becomes large at exponential order as n → ∞.

Example 1.8. In the above construction of the Sierpinski carpet lattice, now,
we redefine Gn by taking T = {(i, j) ∈ Z2|0 ≤ i, j ≤ 2} instead of T = {(i, j) ∈
Z2|0 ≤ i, j ≤ 2, (i, j) �= (1, 1)}. Then, G becomes the quarter space on Z2. When
X is the quarter space on Z2 and ρ(x, y) = |x − y|Z2 , (A1), (A2) holds by regard-
ing the vertex set of Gn as B(0, n). In this case, a = 3, b = 9, and D = 2. Here,
(A3) is not satisfied. Theorems 1.1, 1.2 are also true for X = Z2, as the case of the
quarter space. For general Zd (d ≥ 1), we can discuss in the same manner, and D
coincides with d.

Remark 1.9. For Theorem 1.1, the corresponding results on Zd or half spaces are
studied in Refs. 12, 13, 14 etc. Theorem 1.1 covers the spaces without translation
invariance, although the case α = D is excluded.

2. PROOF OF THEOREMS

Proof of Theorem 1.1. We prove Theorem 1.1 following the idea of Ref. 13.
For x, y ∈ X , x �= y, and n ≥ 0, we denote

An = {ω ∈ �|x ↔ y, inB(x, n)}
(Let An = ∅ if y ∈ B(x, n)c.) We shall show that limn→∞ Pp[An] = 1. To this end,
we estimate

Pp
[
Ac

n

] = Pp[x �↔ y, in B(x, n)]

≤ Pp[{ω ∈ �|ω′ ∈ {x �↔ y, in B(x, n)}}]

≤ Pp

[
{ω′ ∈ {x �↔ y, in B(x, n)}} ∩

⋃

i∈B(x,n)\{x,y}
{x ∼ i}

]

+Pp

[ ⋂

i∈B(x,n)\{x,y}
{x �∼ i}

]

≡ I1 + I2,
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where ω′ is a configuration which is made by removing the bond 〈x, y〉 (if it exists)
from ω. First, we estimate the second term I2.

Lemma 2.1. When α ≤ D, the second term I2 converges to 0 as n → ∞.

Proof: This is elementary, because I2 is equal to and estimated as

I2 =
∏

i∈B(x,n)\{x,y}
{1 − p(x, i)} ≤

∏

i∈B(x,n)\{x,y}
exp{−p(x, i)}

= exp

⎧
⎨

⎩−
∑

i∈B(x,n)\{x,y}
p(x, i)

⎫
⎬

⎭ ,

and we note

lim
n→∞

∑

i∈B(x,n)\{x,y}
p(x, i) =

∑

i∈X\{x,y}
p(x, i)

=
∞∑

n=0

∑

i∈R(x,n),i �=x,y

p(x, i)

≥
∞∑

n=0

cβ(ba−α)
n = ∞,

when b ≥ aα and the result follows. �

We return to the proof of Theorem 1.1. We write the event

E = {x ∼ y} ∩ {ω′ ∈ {x �↔ y, in B(x, n)}} ∩
⋃

i∈B(x,n)\{x,y}
{x ∼ i}.

Then, the first term I1 equals to

p(x, y)−1 Pp[E] ≤ p(x, y)−1 Pp[Xn
′ > Xn]

= p(x, y)−1 Pp[Xn
′′ > Xn].

Here, Xn, X ′
n, X ′′

n stand for the number of connected components in B(x, n), in
B(x, n)\{x}, and in B(x, n)\{x (n)}, respectively. We have used (A2) in the last
equality. Now, we prepare the following two lemmas. These can be proved easily,
but do not contain the case α = D.

Lemma 2.2. When α < D,

Pp

[ ∞⋃

n=0

∞⋂

k=n

{Xk ≥ Xk+1
′′}

]
= 1.
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Lemma 2.3. When α < D,

Pp

[ ∞⋃

n=0

∞⋂

k=n

{Xk
′′ ≥ Xk}

]
= 1.

Proof of Lemma 2.2. We have

Pp[Xn < X ′′
n+1] ≤ Pp

⎡

⎣
⋃

i∈R(x,n+1)\{x (n+1)}
{i �∼ B(x, n)}

⎤

⎦

≤ |B(x, n + 1)| sup
i∈R(x,n+1)\{x (n+1)}

Pp[i �∼ B(x, n)]

≤ c2bn+1 sup
i∈R(x,n+1)

∏

j∈B(x,n)

{1 − p(i, j)}

≤ c2bn+1 sup
i

exp

⎧
⎨

⎩−
∑

j∈B(x,n)

p(i, j)

⎫
⎬

⎭

≤ c2bn+1 sup
i

exp

{
−|B(x, n)| inf

j∈B(x,n)
p(i, j)

}

≤ c2bn+1 exp
{−c(ba−α)

n}
.

We have used the assumption for p in the last inequality. Therefore,
∑∞

n=1 Pp[Xn <

X ′′
n+1] < ∞ when ba−α > 1, and this shows the conclusion by Borel–Cantelli

lemma. �

Proof of Lemma 2.3. The proof is essentially the same as that of Lemma 2.2,
and the calculation is indeed easier. We have

Pp[Xn
′′ < Xn] = Pp[x (n) �∼ {B(x, n)\{x (n)}}]

≤ c exp {−(ba−α)n},
and the result follows. �

We shall complete the proof of Theorem 1.1. From Lemmas 2.2 and 2.3, for
some �1 ⊂ �, Pp[�1] = 1, we have Xn ≥ Xn+1

′′ and Xn
′′ ≥ Xn for sufficiently

large all n, in �1.
On the other hand, if we assume lim sup

n→∞
Pp[X ′′

n > Xn] = ε > 0, it implies

ε = lim sup
n→∞

Ep[1{Xn
′′>Xn}] ≤ Ep

[
lim sup

n→∞
1{X ′′

n >Xn}

]
.
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We have used Fatou’s lemma in the last inequality. Then, for some �2 ⊂ �,
Pp[�2] > 0, we have that lim sup

n→∞
1{X ′′

n >Xn} is strictly positive (therefore, equals to

1) in �2. So, in �2, we have X ′′
n > Xn for infinitely many n.

Then, we can choose ω ∈ �1 ∩ �2, and Xn(ω) becomes non-positive for
some n. On the other hand, Xn should be a positive integer, because it stands
for the number of connected components. This is a contradiction. This means
lim sup

n→∞
Pp[Xn

′′ > Xn] = 0, and the proof is complete. �

Proof of Theorem 1.2. For any x ∈ X ,

∑

y∈X

Pp[x ∼ y] =
∞∑

n=0

∑

y∈R(x,n)

p(x, y)

≥
∞∑

n=N

|R(x, n)| inf{p(x, y)|y ∈ R(x, n)}

≥
∞∑

n=N

cβ(ba−α)
n = ∞,

when b ≥ aα . We note the events x ∼ y are independent for each y, and the result
for α = D follows by Borel–Cantelli lemma. �

Proof of Theorem 1.3. For any x ∈ X , it is enough to show that we can find p
satisfying

Ep[#{y ∈ X |y ∼ x}] ≤ 1.

If the above estimate holds, we can see that P∞ = 0 by comparing percolation
cluster with Galton–Watson branching process with parameter 1. We consider the
case of p(x, y) = βρ(x, y)−α . Then, the left hand side is equal to and bounded by

∑

y∈X

Pp[y ∼ x] =
∞∑

n=0

∑

y∈R(x,n)

p(x, y)

≤
∞∑

n=0

cbn sup{p(x, y)|y ∈ R(x, n)}

≤
∞∑

n=0

cbnβ[inf{ρ(x, y)|y ∈ R(x, n)}]−α
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≤
∞∑

n=0

cβ(ba−α)
n
.

We have used (A3) in the last inequality. The summation in the right hand side
converges if and only if ba−α < 1, and equals to cβ aα

aα−b . We can therefore have a

desired estimate by choosing β ≤ c−1(1 − b
aα ). �

Proof of Theorem 1.4. We show that

lim
n→∞ Pp[B(x, n) �∼ B(x, n)c] = 1

for any x ∈ X . For simplicity, we deal with the case of p(x, y) = βρ(x, y)−α . We
have

Pp[B(x, n) �∼ B(x, n)c] =
∏

y∈B(x,n),z∈B(x,n)c

{1 − p(y, z)}

=
∞∏

k=1

∏

y∈B(x,n),z∈R(x,n+k)

{1 − p(y, z)}

≥
∞∏

k=1

[1 − β{inf
y,z

ρ(y, z)}−α]
|B(x,n)||B(x,n+k)|

,

where the infimum in the right hand side is taken over all y ∈ B(x, n), z ∈ R(x, n +
k). By (A3), the part of k = 1 in the product converges to 1 as n → ∞, when
α > 2D;

{1 − β{inf{ρ(y, z) | y ∈ B(x, n), z ∈ R(x, n + 1)}}−α}|B(x,n)||B(x,n+1)|

≥ {1 − β(c5an)−α}cb2n+1 → 1 (n → ∞).

The parts of k ≥ 2 are bounded from below by

∞∏

k=1

{
1 − βa−αn(ak−1 − 1)

−α
}cb2n+k

≡ an,

and

log an ≥ −c(b2a−α)n
∞∑

k=2

(ba−α)k

→ 0 (n → ∞)

when α > 2D, and the result follows. �
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Remark 2.4. Theorems 1.3 and 1.4 only cover the cases such as the space like
Cantor set. But we expect to hold the above under more general conditions (for
example, finite ramified fractals like the Sierpinski gasket lattice). Also, whether
percolation occurs or not in the region D < α ≤ 2D is a remained problem.
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